Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.382
1.
Laeknabladid ; 110(5): 247-253, 2024 May.
Article Is | MEDLINE | ID: mdl-38713559

INTRODUCTION: One of the most serious complications of surgical aortic valve replacement (SAVR) is stroke that can result in increased rates of complications, morbidity and mortality postoperatively. The aim of this study was to investigate incidence, risk factors and short-term outcome in a well defined cohort of SAVR-patients. MATERIALS AND METHOD: A retrospective study on 740 consecutive aortic stenosis patients who underwent SAVR in Iceland 2002-2019. Patients with stroke were compared with non-stroke patients; including preoperative risk factors of cardiovascular disease, echocardiogram-results, rate of early postoperative complications other than stroke and 30 day mortality. RESULTS: Mean age was 71 yrs (34% females) with 57% of the patients receiving stented bioprosthesis, 31% a stentless Freestyle®-valve and 12% a mechanical valve. Mean EuroSCORE-II was 3.6, with a maximum preop-gradient of 70 mmHg and an estimated valvular area of 0.73 cm2. Thirteen (1.8%) patients were diagnosed with stroke where hemiplegia (n=9), loss of consciousness (n=3) and/or aphasia (n=4) were the most common presenting symptoms. In 70% of cases the neurological symptoms resolved or disappeared in the first weeks and months after surgery. Only one patient out of 13 died within 30-days (7.7%). Stroke-patients had significantly lower BMI than non-stroke patients, but other risk factors of cardiovascular diseases, intraoperative factors or the rate of other severe postoperative complications than stroke were similar between groups. Total length of stay was 14 days vs. 10 days median, including 2 vs. 1 days in the ICU, in the stroke and non-stroke-groups, respectively. CONCLUSIONS: The rate of stroke after SAVR was low (1.8%) and in line with other similar studies. Although a severe complication, most patients with perioperative stroke survived 30 days postoperatively and in majority of cases neurological symptoms recovered.


Aortic Valve Stenosis , Aortic Valve , Heart Valve Prosthesis Implantation , Heart Valve Prosthesis , Stroke , Humans , Female , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/mortality , Aortic Valve Stenosis/diagnostic imaging , Male , Aged , Risk Factors , Retrospective Studies , Iceland/epidemiology , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis Implantation/mortality , Heart Valve Prosthesis Implantation/instrumentation , Stroke/epidemiology , Stroke/mortality , Stroke/etiology , Incidence , Time Factors , Treatment Outcome , Aortic Valve/surgery , Aortic Valve/diagnostic imaging , Risk Assessment , Aged, 80 and over , Middle Aged
2.
Clin Cardiol ; 47(5): e24272, 2024 May.
Article En | MEDLINE | ID: mdl-38742736

Paravalvular leak (PVL) is an uncommon complication of prosthetic valve implantation, which can lead to infective endocarditis, heart failure, and hemolytic anemia. Surgical reintervention of PVLs is associated with high mortality rates. Transcatheter PVL closure (TPVLc) has emerged as an alternative to surgical reoperation. This method provides a high success rate with a low rate of complications. This article reviews the pathogenesis, clinical manifestation, diagnosis, and management of PVL and complications following TPVLc. Besides, we presented a case of a patient with severe PVL following mitral valve replacement, who experienced complete heart block (CHB) during TPVLc. The first TPVLc procedure failed in our patient due to possible AV-node insult during catheterization. After 1 week of persistent CHB, a permanent pacemaker was implanted. The defect was successfully passed using the previous attempt. Considering the advantages of TPVLc, procedure failure should be regarded as a concern. TPVLc should be performed by experienced medical teams in carefully selected patients.


Cardiac Catheterization , Heart Valve Prosthesis Implantation , Heart Valve Prosthesis , Mitral Valve , Prosthesis Failure , Humans , Mitral Valve/surgery , Mitral Valve/diagnostic imaging , Cardiac Catheterization/methods , Cardiac Catheterization/adverse effects , Cardiac Catheterization/instrumentation , Heart Valve Prosthesis/adverse effects , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis Implantation/methods , Mitral Valve Insufficiency/surgery , Mitral Valve Insufficiency/etiology , Echocardiography, Transesophageal , Male , Treatment Outcome , Female , Aged , Reoperation
3.
JACC Cardiovasc Interv ; 17(8): 1007-1016, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38573257

BACKGROUND: Data on valve reintervention after transcatheter aortic valve replacement (TAVR) or surgical aortic valve replacement (SAVR) are limited. OBJECTIVES: The authors compared the 5-year incidence of valve reintervention after self-expanding CoreValve/Evolut TAVR vs SAVR. METHODS: Pooled data from CoreValve and Evolut R/PRO (Medtronic) randomized trials and single-arm studies encompassed 5,925 TAVR (4,478 CoreValve and 1,447 Evolut R/PRO) and 1,832 SAVR patients. Reinterventions were categorized by indication, timing, and treatment. The cumulative incidence of reintervention was compared between TAVR vs SAVR, Evolut vs CoreValve, and Evolut vs SAVR. RESULTS: There were 99 reinterventions (80 TAVR and 19 SAVR). The cumulative incidence of reintervention through 5 years was higher with TAVR vs SAVR (2.2% vs 1.5%; P = 0.017), with differences observed early (≤1 year; adjusted subdistribution HR: 3.50; 95% CI: 1.53-8.02) but not from >1 to 5 years (adjusted subdistribution HR: 1.05; 95% CI: 0.48-2.28). The most common reason for reintervention was paravalvular regurgitation after TAVR and endocarditis after SAVR. Evolut had a significantly lower incidence of reintervention than CoreValve (0.9% vs 1.6%; P = 0.006) at 5 years with differences observed early (adjusted subdistribution HR: 0.30; 95% CI: 0.12-0.73) but not from >1 to 5 years (adjusted subdistribution HR: 0.61; 95% CI: 0.21-1.74). The 5-year incidence of reintervention was similar for Evolut vs SAVR (0.9% vs 1.5%; P = 0.41). CONCLUSIONS: A low incidence of reintervention was observed for CoreValve/Evolut R/PRO and SAVR through 5 years. Reintervention occurred most often at ≤1 year for TAVR and >1 year for SAVR. Most early reinterventions were with the first-generation CoreValve and managed percutaneously. Reinterventions were more common following CoreValve TAVR compared with Evolut TAVR or SAVR.


Aortic Valve Stenosis , Heart Valve Prosthesis Implantation , Postoperative Complications , Transcatheter Aortic Valve Replacement , Aged , Aged, 80 and over , Female , Humans , Male , Aortic Valve/surgery , Aortic Valve/diagnostic imaging , Aortic Valve/physiopathology , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/physiopathology , Heart Valve Prosthesis , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis Implantation/instrumentation , Postoperative Complications/surgery , Prosthesis Design , Randomized Controlled Trials as Topic , Risk Assessment , Risk Factors , Severity of Illness Index , Time Factors , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Treatment Outcome , Incidence , Retreatment
4.
Inn Med (Heidelb) ; 65(5): 431-438, 2024 May.
Article De | MEDLINE | ID: mdl-38635087

The pathophysiology of aortic valve diseases is of predominantly degenerative nature, characterized by calcific aortic valve stenosis, which is associated with a reduction in prognosis. The prevalence of aortic valve insufficiency also increases with advancing age. Timely causal treatment is crucial in the management of aortic valve diseases. Following the indication for intervention, the heart team plays a central role in evaluating the results and making therapeutic decisions that consider the patient's preferences. In the assessment of treatment options, considerations regarding the long-term perspective are particularly crucial, especially in younger patients. The most common therapeutic approach for aortic valve diseases is the introduction of a new valve prosthesis. In the majority of cases, this is now achieved through catheter-based implantation of a bioprosthetic heart valve, known as transcatheter aortic valve implantation (TAVI). Open surgical aortic valve replacement (AVR) is favored in younger patients with low surgical risk or in the case that TAVI is not feasible. In AVR, both biological and the longest-lasting mechanical prosthesis types are used. Surgical repair techniques are primarily applied in cases of aortic valve regurgitation. Notably, TAVI, as well as surgical procedures for the treatment of aortic valve diseases, have undergone significant advancements in recent years, including expanded indications for TAVI and, on the surgical side, in particular the development of minimally invasive surgical techniques.


Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/methods , Aortic Valve/surgery , Aortic Valve/pathology , Heart Valve Prosthesis , Aortic Valve Disease/surgery , Heart Valve Prosthesis Implantation/methods , Heart Valve Prosthesis Implantation/instrumentation , Aortic Valve Stenosis/surgery , Aortic Valve Insufficiency/surgery , Aortic Valve Insufficiency/physiopathology , Bioprosthesis
5.
Catheter Cardiovasc Interv ; 103(6): 1023-1034, 2024 May.
Article En | MEDLINE | ID: mdl-38639143

BACKGROUND: The clinical efficacy and safety of alcohol septal ablation (ASA) for obstructive hypertrophic cardiomyopathy (HCM) have been well-established; however, less is known about outcomes in patients undergoing preemptive ASA before transcatheter mitral valve replacement (TMVR). AIMS: The goal of this study is to characterize the procedural characteristics and examine the clinical outcomes of ASA in both HCM and pre-TMVR. METHODS: This retrospective study compared procedural characteristics and outcomes in patient who underwent ASA for HCM and TMVR. RESULTS: In total, 137 patients were included, 86 in the HCM group and 51 in the TMVR group. The intraventricular septal thickness (mean 1.8 vs. 1.2 cm; p < 0.0001) and the pre-ASA LVOT gradient (73.6 vs. 33.8 mmHg; p ≤ 0.001) were higher in the HCM group vs the TMVR group. The mean volume of ethanol injected was higher (mean 2.4 vs. 1.7 cc; p < 0.0001). The average neo-left ventricular outflow tract area increased significantly after ASA in the patients undergoing TMVR (99.2 ± 83.37 mm2 vs. 196.5 ± 114.55 mm2; p = <0.0001). The HCM group had a greater reduction in the LVOT gradient after ASA vs the TMVR group (49.3 vs. 18 mmHg; p = 0.0040). The primary composite endpoint was higher in the TMVR group versus the HCM group (50.9% vs. 25.6%; p = 0.0404) and had a higher incidence of new permanent pacemaker (PPM) (25.5% vs. 18.6%; p = 0.3402). The TMVR group had a higher rate of all-cause mortality (9.8% vs. 1.2%; p = 0.0268). CONCLUSIONS: Preemptive ASA before TMVR was performed in patients with higher degree of clinical comorbidities, and correspondingly is associated with worse short-term clinical outcomes in comparison to ASA for HCM patients. ASA before TMVR enabled percutaneous mitral interventions in a small but significant minority of patients that would have otherwise been excluded. The degree of LVOT and neoLVOT area increase is significant and predictable.


Ablation Techniques , Cardiac Catheterization , Cardiomyopathy, Hypertrophic , Ethanol , Heart Valve Prosthesis Implantation , Mitral Valve , Humans , Retrospective Studies , Male , Ethanol/administration & dosage , Ethanol/adverse effects , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/mortality , Cardiomyopathy, Hypertrophic/therapy , Cardiomyopathy, Hypertrophic/surgery , Cardiomyopathy, Hypertrophic/physiopathology , Female , Treatment Outcome , Ablation Techniques/adverse effects , Ablation Techniques/mortality , Aged , Cardiac Catheterization/adverse effects , Cardiac Catheterization/mortality , Cardiac Catheterization/instrumentation , Middle Aged , Risk Factors , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis Implantation/mortality , Time Factors , Mitral Valve/diagnostic imaging , Mitral Valve/physiopathology , Mitral Valve/surgery , Recovery of Function , Aged, 80 and over , Heart Septum/diagnostic imaging , Heart Septum/surgery , Mitral Valve Insufficiency/diagnostic imaging , Mitral Valve Insufficiency/physiopathology , Mitral Valve Insufficiency/surgery , Mitral Valve Insufficiency/mortality
6.
Catheter Cardiovasc Interv ; 103(6): 1069-1073, 2024 May.
Article En | MEDLINE | ID: mdl-38584521
7.
Catheter Cardiovasc Interv ; 103(6): 924-933, 2024 May.
Article En | MEDLINE | ID: mdl-38597297

BACKGROUND: Percutaneous pulmonary valve implantation (PPVI) is a non-surgical treatment for right ventricular outflow tract (RVOT) dysfunction. During PPVI, a stented valve, delivered via catheter, replaces the dysfunctional pulmonary valve. Stent oversizing allows valve anchoring within the RVOT, but overexpansion can intrude on the surrounding structures. Potentially dangerous outcomes include aortic valve insufficiency (AVI) from aortic root (AR) distortion and myocardial ischemia from coronary artery (CA) compression. Currently, risks are evaluated via balloon angioplasty/sizing before stent deployment. Patient-specific finite element (FE) analysis frameworks can improve pre-procedural risk assessment, but current methods require hundreds of hours of high-performance computation. METHODS: We created a simplified method to simulate the procedure using patient-specific FE models for accurate, efficient pre-procedural PPVI (using balloon expandable valves) risk assessment. The methodology was tested by retrospectively evaluating the clinical outcome of 12 PPVI candidates. RESULTS: Of 12 patients (median age 14.5 years) with dysfunctional RVOT, 7 had native RVOT and 5 had RV-PA conduits. Seven patients had undergone successful RVOT stent/valve placement, three had significant AVI on balloon testing, one had left CA compression, and one had both AVI and left CA compression. A model-calculated change of more than 20% in lumen diameter of the AR or coronary arteries correctly predicted aortic valve sufficiency and/or CA compression in all the patients. CONCLUSION: Agreement between FE results and clinical outcomes is excellent. Additionally, these models run in 2-6 min on a desktop computer, demonstrating potential use of FE analysis for pre-procedural risk assessment of PPVI in a clinically relevant timeframe.


Cardiac Catheterization , Finite Element Analysis , Heart Valve Prosthesis Implantation , Heart Valve Prosthesis , Models, Cardiovascular , Patient-Specific Modeling , Prosthesis Design , Pulmonary Valve , Humans , Pulmonary Valve/physiopathology , Pulmonary Valve/surgery , Pulmonary Valve/diagnostic imaging , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis Implantation/adverse effects , Risk Assessment , Adolescent , Treatment Outcome , Risk Factors , Male , Child , Retrospective Studies , Female , Cardiac Catheterization/adverse effects , Cardiac Catheterization/instrumentation , Young Adult , Predictive Value of Tests , Hemodynamics , Stents , Pulmonary Valve Insufficiency/physiopathology , Pulmonary Valve Insufficiency/surgery , Pulmonary Valve Insufficiency/diagnostic imaging , Pulmonary Valve Insufficiency/etiology , Ventricular Outflow Obstruction/physiopathology , Ventricular Outflow Obstruction/etiology , Ventricular Outflow Obstruction/diagnostic imaging , Clinical Decision-Making , Adult
14.
JACC Cardiovasc Interv ; 17(8): 979-988, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38658126

BACKGROUND: Symptomatic patients with severe aortic stenosis (AS) at high risk for surgical aortic valve replacement (SAVR) sustain comparable improvements in health status over 5 years after transcatheter aortic valve replacement (TAVR) or SAVR. Whether a similar long-term benefit is observed among intermediate-risk AS patients is unknown. OBJECTIVES: The purpose of this study was to assess health status outcomes through 5 years in intermediate risk patients treated with a self-expanding TAVR prosthesis or SAVR using data from the SURTAVI (Surgical Replacement and Transcatheter Aortic Valve Implantation) trial. METHODS: Intermediate-risk patients randomized to transfemoral TAVR or SAVR in the SURTAVI trial had disease-specific health status assessed at baseline, 30 days, and annually to 5 years using the Kansas City Cardiomyopathy Questionnaire (KCCQ). Health status was compared between groups using fixed effects repeated measures modelling. RESULTS: Of the 1,584 patients (TAVR, n = 805; SAVR, n = 779) included in the analysis, health status improved more rapidly after TAVR compared with SAVR. However, by 1 year, both groups experienced large health status benefits (mean change in KCCQ-Overall Summary Score (KCCQ-OS) from baseline: TAVR: 20.5 ± 22.4; SAVR: 20.5 ± 22.2). This benefit was sustained, albeit modestly attenuated, at 5 years (mean change in KCCQ-OS from baseline: TAVR: 15.4 ± 25.1; SAVR: 14.3 ± 24.2). There were no significant differences in health status between the cohorts at 1 year or beyond. Similar findings were observed in the KCCQ subscales, although a substantial attenuation of benefit was noted in the physical limitation subscale over time in both groups. CONCLUSIONS: In intermediate-risk AS patients, both transfemoral TAVR and SAVR resulted in comparable and durable health status benefits to 5 years. Further research is necessary to elucidate the mechanisms for the small decline in health status noted at 5 years compared with 1 year in both groups. (Safety and Efficacy Study of the Medtronic CoreValve® System in the Treatment of Severe, Symptomatic Aortic Stenosis in Intermediate Risk Subjects Who Need Aortic Valve Replacement [SURTAVI]; NCT01586910).


Aortic Valve Stenosis , Aortic Valve , Femoral Artery , Health Status , Heart Valve Prosthesis , Quality of Life , Recovery of Function , Severity of Illness Index , Transcatheter Aortic Valve Replacement , Humans , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/physiopathology , Female , Male , Time Factors , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Treatment Outcome , Aged , Aged, 80 and over , Risk Factors , Aortic Valve/surgery , Aortic Valve/physiopathology , Aortic Valve/diagnostic imaging , Risk Assessment , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis Implantation/adverse effects , Catheterization, Peripheral/adverse effects , Punctures , Prosthesis Design
15.
Innovations (Phila) ; 19(2): 196-203, 2024.
Article En | MEDLINE | ID: mdl-38576096

In the evolving landscape of cardiac surgery, this article explores the potential of minimally invasive mitral valve replacement procedures as a viable alternative to conventional surgical techniques. Leveraging advancements in automated suturing devices and video endoscopy, our work aims to demonstrate that minimally invasive approaches can be applied across a broad spectrum of surgical scenarios. Herein we highlight preoperative diagnostics and operative techniques, with a focus on infra-axillary anterolateral minithoracotomy as the access point. Our technique utilizes technology from LSI SOLUTIONS® (Victor, NY, USA), including the RAM® Device for automated suturing, which has an ergonomic design and safety features. The device's capabilities are further enhanced by the SEW-EASY® Device, the RAM® RING, and the COR-KNOT MINI® Device, which streamline suture management and securement. This work outlines how these technological advancements can mitigate concerns about technical complexity and learning curves, thereby encouraging wider adoption of minimally invasive techniques. Clinical benefits may include reduced surgical trauma, quicker recovery, and cost-effectiveness, making it a compelling option in an era of aggressively promoted transcatheter interventions.


Endoscopy , Heart Valve Prosthesis Implantation , Minimally Invasive Surgical Procedures , Mitral Valve , Suture Techniques , Humans , Minimally Invasive Surgical Procedures/methods , Minimally Invasive Surgical Procedures/instrumentation , Mitral Valve/surgery , Heart Valve Prosthesis Implantation/methods , Heart Valve Prosthesis Implantation/instrumentation , Suture Techniques/instrumentation , Endoscopy/methods , Endoscopy/instrumentation , Thoracotomy/methods
16.
Innovations (Phila) ; 19(2): 156-160, 2024.
Article En | MEDLINE | ID: mdl-38462836

OBJECTIVE: Here we report our preclinical, proof-of-concept testing to assess the ability of a novel device to correct mitral regurgitation. The Milwaukee Heart device aims to enable any cardiac surgeon to perform high-quality mitral valve repair using a standard annuloplasty ring with a crosshatch of microporous, monofilament suture. METHODS: Hemodynamic, echocardiographic, and videographic data were collected at baseline, following induction of mitral regurgitation, and after repair using porcine hearts in an ex vivo biosimulator model. A commercially available cardiac prosthesis assessment platform was then used to assess the hydrodynamic characteristics of the study device. RESULTS: Porcine biosimulator pressure and flow metrics exhibited successful correction of mitral regurgitation following device implantation with similar values to baseline. Hydrodynamic results yielded pressure gradients and an effective orifice area comparable to currently approved prostheses. CONCLUSIONS: The study device effectively reduced mitral valve regurgitation and improved hemodynamics in our preclinical model with similar biophysical metrics to currently approved devices. Future in vivo trials are needed to evaluate the efficacy, biocompatibility, and freedom from the most likely adverse events, such as device thrombosis, embolic events, and hemolysis.


Heart Valve Prosthesis , Hemodynamics , Mitral Valve Annuloplasty , Mitral Valve Insufficiency , Proof of Concept Study , Animals , Mitral Valve Annuloplasty/methods , Mitral Valve Annuloplasty/instrumentation , Swine , Mitral Valve Insufficiency/surgery , Hemodynamics/physiology , Prosthesis Design , Mitral Valve/surgery , Heart Valve Prosthesis Implantation/methods , Heart Valve Prosthesis Implantation/instrumentation , Echocardiography , Disease Models, Animal
17.
Innovations (Phila) ; 19(2): 150-155, 2024.
Article En | MEDLINE | ID: mdl-38462786

OBJECTIVE: The aim of this study was to validate the use of a new resection device in patient candidates for surgical aortic valve replacement. We evaluated the efficacy of this new circular blade to resect the aortic valve and the efficacy to collect the debris during the resection. METHODS: For this study, a single size instrument was used, with an external diameter of 22 mm, and patients were selected on the basis of the preoperative assessment of the aortic diameters. RESULTS: From October 2018 to June 2019, 10 patient candidates for surgical aortic valve replacement were selected to undergo native aortic valve resection using a new device, before surgical valve implantation. The mean age of the patients was 74 ± 7.6 years, and 8 of 10 were male. The mean aortic annulus diameter, measured before the procedure, was 25.7 ± 1.57 mm. The resection was complete in 9 (90%) patients. In 1 patient, due to an imprecise positioning of the device, the valve resection was partial. None of the patients showed signs or symptoms due to debris embolism. In all patients, the postoperative course was uneventful. CONCLUSIONS: These preliminary results show that resection of the aortic valve using a circular foldable blade is feasible. This prototype, used during conventional surgery even through a small incision, provided an efficient tool to easily resect the valve without debris release.


Aortic Valve , Humans , Male , Aortic Valve/surgery , Aged , Female , Aged, 80 and over , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis Implantation/methods , Treatment Outcome , Equipment Design
18.
J Cardiovasc Electrophysiol ; 35(5): 1050-1054, 2024 May.
Article En | MEDLINE | ID: mdl-38501328

INTRODUCTION: Tricuspid regurgitation is associated with significant morbidity and mortality, and occurs at a higher rate in patients with cardiovascular implantable electronic devices. Percutaneous strategies for managing tricuspid regurgitation are evolving, including the development of bicaval valve implantation which has been successfully used in patients with pacing leads. METHODS AND RESULTS: We present the first documented case of lead failure following TricValve® implantation, a dedicated self-expanding system for bicaval valve implantation, and the first successful lead revision procedure in this setting. CONCLUSION: The case illustrates important considerations in undertaking percutaneous intervention in patients with cardiovascular implantable electronic devices, and their ongoing management.


Defibrillators, Implantable , Equipment Failure , Tricuspid Valve Insufficiency , Humans , Tricuspid Valve Insufficiency/surgery , Tricuspid Valve Insufficiency/physiopathology , Tricuspid Valve Insufficiency/diagnostic imaging , Heart Valve Prosthesis , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis Implantation/adverse effects , Male , Aged , Treatment Outcome , Reoperation , Prosthesis Design , Device Removal , Female , Electric Countershock/instrumentation , Electric Countershock/adverse effects
...